Topic 9.3 Exponential Models

Essential Question:
How does the equation of an ellipse relate to the features of its graph?

CONCEPT: Features of an Ellipse

Features of an Ellipse

An ellipse is the set of points P in a plane such that the sum of the distances from P to two fixed points F_{1} and F_{2} is a constant. The fixed points are the foci (singular: "focus").
$P F_{1}+P F_{2}=k$

The major axis is the segment passing through the foci with endpoints on the ellipse. The endpoints of the major axis are called the vertices (singular: "vertex") of the ellipse.

The minor axis is the segment perpendicular to the major axis at the center with endpoints on the ellipse. The endpoints of the minor axis are called the co-vertices of the ellipse.

The center of an ellipse is the midpoint of the major or minor axis.

Q: How do the foci represent the ellipse?
Q: How do the vertices and co-vertices of an ellipse compare to each other?

Notes:

CONCEPT Summary

Ellipses

DEFINITION

An ellipse is the set of points P in a plane such that the sum of the distances from $P(x, y)$ to two fixed points F_{1} and F_{2} is a constant.

GRAPHS

EQUATIONS
$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$

If the major axis is horizontal,
($h \pm a, k$) are the vertices,
($h, k \pm b$) are the co-vertices, and ($h \pm c, k$) are the foci where $a^{2}=c^{2}+b^{2}$.

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

center (h, k)

If the major axis is vertical, ($h, k \pm a$) are the vertices,
($h \pm b, k$) are the co-vertices, and $(h, k \pm c)$ are the foci where $a^{2}=c^{2}+b^{2}$.

Q: How are the features of an ellipse affected by whether the major axis is horizontal or vertical?

Notes:

Examples \& Questions
 Examples 1

Q: Why do you use the Distance Formula to derive the equation of an ellipse?
Q: How do you know which equation of the ellipse to use when solving for the distance from the center to the vertices and co-vertices?
Q: What do a and b stand for in the standard form of the equation of an ellipse?
Q: How could you use transformations to relate the equation for an ellipse to the equation for a circle?

Examples 2

Q: How is the major axis determined using the equation of the ellipse in standard form?
Q : here are the foci found?
Q: Why should you use the Pythagorean Theorem to help find the foci?

Examples 3

Part A
Q: How can you find the vertices or co-vertices if you know the length of an axis?
Q: How do the vertices relate to the equation of an ellipse?
Part B
Q: When you know the foci and the co-vertices of an ellipse, what other information do you need to find in order to write the equation of the ellipse? Explain.

Examples 4
Q: Why is the negative value of b not considered as a solution of the equation of the ellipse?
Q: How can you determine how far the foci are from the center?

Examples 5
Q: Why do you add constants to each quadratic expression with x - and y-variables?
Q: Why is the center of the ellipse not at the origin?

Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)

Challenge: \#10, 13- key will be posted in Power School Learning.

Lesson Quiz 9.3/Noles

