Topic 9.1 Parabolas

Essential Question:
How do the geometric properties of conic sections relate to their algebraic representations?

CONCEPT: CONIC SECTIONS

A conic section is a curve formed by the intersection of a plane and a double right cone.

Parabola	Circle

Each conic section has a geometric definition that describes a property of every point on the curve. The conic sections covered in this topic can be graphed in a coordinate plane and can be represented by a second-degree equation in two variables.
The general form of a second-degree equation is
$A x^{2}+B x y+C y^{2}+D x+E y+F=0$.
All of the conic sections covered in this topic will have equations where the coefficient of the $x y$-term is zero. A nonzero $x y$-term results in conics with an axis of symmetry that is neither horizontal nor vertical.

Q: Describe what is created by the intersection of a plane and a cone.
Q: How can you relate the cross sections to shapes created on a coordinate plane?
Q: If two-dimensional figures are created on a coordinate plane by an infinite number of points that look like lines or curves, what can you say about 3-D figures?
Q: If these conic sections can be represented by second-degree equations, what can you predict about their graphs?

CONCEPT Summary

Parabolas

DEFINITION

A parabola is the set of points on a plane that are equidistant from a given point, the focus, and a given line, the directrix.

GRAPHS The parabolas below have vertex (0,0). Parabolas can also be translated anywhere in the coordinate plane.

Vertical

Axis of symmetry: $x=0$
Focus ($0, \mathrm{c}$)
Directrix $y=-c$

Horizontal

Axis of symmetry: $y=0$
Focus ($c, 0$)
Directrix $x=-c$

EQUATIONS For a parabola with vertex at the origin and focal length $|c|$

$$
y=\frac{1}{4 c} x^{2}
$$

$$
x=\frac{1}{4 c} y^{2}
$$

Q: What causes the parabola to have its curve on each side of the vertex? Explain in terms of distance.

Notes:

Examples \& Questions
 Examples 1

Q: How can you define point P in the equation for the parabola?
Q: Why do you use the variables x and y for P instead of its actual coordinates when writing the equation?
Q: What indicates that the parabola opens vertically or horizontally?

Examples 2

Q: How does a parabola change as the distance between the focus and the vertex of the parabola decreases?
Q: For a vertical parabola, how do you identify the focus and the directrix to use when setting up the distance formula?
Q : Why does the value of c affect the width of the parabola?

Examples 3

Q: The equation for any parabola is $y=\frac{1}{4 c} x$. If you are given the value of c for a specific parabola, how do you write its equation?
Q: How do you know when to use $y=\frac{1}{4 c} x^{2}$ vs $y=\frac{1}{4 c} y^{2}$?
Examples 4
Q: How can you relate the given equation to the equation for any parabola in terms of c ?
Q: Since the equations are exactly the same except for the denominator, how can you solve for c ?

Examples 5

Q: How do you know if you need to solve for x or y ?
Q: Why is it important to complete the square first in order to find the focus and directrix?
Q: After you write the equation in vertex form, how do you find the value of c ?
Q: How can the value of c define the focus and the directrix?

Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)

Challenge: \#15, 23, 24, 27 - key will be posted in Power School Learning.

Lesson Quiz 9.1/Notes

