Topic 8.1 Solving Trigonometric Equations Using Inverses

Essential Question:

How can you use an inverse function to find all the solutions of a trigonometric equation?

Explore and Reason Complete online

CONCEPT: Define Inverse Trigonometric Functions

	Inverse sine	Inverse cosine	Inverse tangent
	$y = \sin^{-1} x$	$y = \cos^{-1} x$	$y = \tan^{-1} x$
DOMAIN	[–1, 1]	[–1, 1]	(−∞, ∞)
RANGE	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$	[0 , <i>π</i>]	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
GRAPHS	$\begin{array}{c c} & & y \\ & & \pi \\ \hline 2 \\ & & x \\ \hline -1 \\ & -\pi \\ \hline 2 \\ & & \end{array}$	$ \begin{array}{c} \pi^{\downarrow} y \\ \pi^{} \\ 2 \\ -1 \\ 0 \\ 1 \\ -\pi \\ 2 \\ \end{array} $	$\begin{array}{c} & y \\ & \pi \\ \hline 2 \\ \hline -1 \\ -\pi \\ \hline 2 \\ \hline \end{array} \\ \hline 0 \\ 1 \\ \hline \end{array}$

NOTES:

Examples & Questions

Examples 1

Q: Is there more than one way to restrict the domain of $y = \sin x$ so the function has a valid inverse function?

Examples 2

Q: What do you know about the value of $\sin^{-1}(\frac{1}{2})$?

Q: What is another way to determine the value of $\sin^{-1}(\frac{1}{2})$?

Examples 3

Q: Why do you need to check that your calculator has the correct units of measure selected? Q: Why do you add (360°)k to two angles to identify all angles with the cosine value in Part A, but add (180°)k to only one value to identify all angles with the tangent value in Part B?

Examples 4

Q: How is solving the trigonometric equation in the example similar to solving a linear equation?

Q: How do you now if you made an error isolating the sine function?

Examples 5

Q: How is one year represented in this function?

Q: Why is looking at a graph helpful when answering this question?

Q: How do you know if the angle in the express $\cos\left(\frac{\pi x}{6}\right)$ is measured in radians or degrees?

Practice and Problem Solving

Complete MathXL for School: Practice and Problem Solving (online) Complete MathXL for School: Enrichment (online)

Lesson Quiz 8.1