Topic 8.1 Solving Trigonometric Equations Using Inverses Essential Question: How can you use an inverse function to find all the solutions of a trigonometric equation?			
Explore and Reason Complete online			
CONCEPT: Define Inverse Trigonometric Functions			
	Inverse sine	Inverse cosine	Inverse tangent
FUNCTION	$y=\sin ^{-1} x$	$y=\cos ^{-1} x$	$y=\tan ^{-1} x$
DOMAIN	[-1, 1]	[-1, 1]	$(-\infty, \infty)$
RANGE	$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
GRAPHS			
NOTES:			

Examples \& Questions
 Examples 1

Q: Is there more than one way to restrict the domain of $y=\sin x$ so the function has a valid inverse function?

Examples 2

Q: What do you know about the value of $\sin ^{-1}\left(\frac{1}{2}\right)$?
Q : What is another way to determine the value of $\sin ^{-1}\left(\frac{1}{2}\right)$?

Examples 3

Q: Why do you need to check that your calculator has the correct units of measure selected?
Q: Why do you add $\left(360^{\circ}\right) \mathrm{k}$ to two angles to identify all angles with the cosine value in Part A , but add $\left(180^{\circ}\right) \mathrm{k}$ to only one value to identify all angles with the tangent value in Part B?

Examples 4

Q: How is solving the trigonometric equation in the example similar to solving a linear equation?
Q: How do you now if you made an error isolating the sine function?

Examples 5

Q: How is one year represented in this function?
Q: Why is looking at a graph helpful when answering this question?
Q: How do you know if the angle in the express $\cos \left(\frac{\pi x}{6}\right)$ is measured in radians or degrees?
Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)

Lesson Quiz 8.1

