Topic 7.4 Exponential Models

Essential Question:
How can you identify key features of sine and cosine functions?

Concept:

Frequency is the reciprocal of the period.
$y=\sin x$ and $y=\cos x$ each have a period of 2π and a frequency of $\frac{1}{2 \pi}$. The function repeats itself one time from 0 to 2π.
$y=-\sin 2 x$ has a period of π, and a frequency of $\frac{1}{\pi}$. The function repeats itself one time from 0 to π.

CONCEPT Summary

Key Features of Sine and Cosine Graphs

WORDS The general equation for a sine function is $y=a \sin b x$, just as the general equation for a cosine function is $y=a \cos b x$. In both cases, the amplitude is $|a|$ and the frequency is $\frac{b}{2 \pi}$
The equation for the graph below is $y=\frac{1}{2} \sin 4 x$.
GRAPH

The x-axis, or $y=0$, is the midline, which is halfway between the maximum points and minimum points.

The period is $\frac{\pi}{2}$, or the length of one
cycle. The frequency is $\frac{2}{\pi}$, because the
function repeats 2 times from 0 to π

Q: Why is the absolute value used in the expression for the amplitude of the function?

Practice and Problem Solving

7.4 Quiz/Notes:

Complete MathXL for School: Enrichment (online)
Complete MathXL for School: Enrichment (online)
Challenge: \#12, 19, 20, 23 - key will be posted in Power School Learning.

```
Examples \& Questions
Examples 1
Part A:
Q: Can you choose any point as the starting point of the period?
Q: What do you notice about the \(y\)-values in each period?
Part B:
Q: How are the minimum and maximum of the function \(y=\sin x\) related?
Q : Why do the minimum and maximum values repeat every \(2 \pi\) radians?
```


Examples 2

```
Part A:
Q: How is the amplitude related to other transformations of functions you have previously studied?
Part B:
Q: Why does the negative sign in the function \(y=-\sin 2 x\) not affect the amplitude of the function?
Q: Under what conditions would the coefficient of \(x\) make the period longer?
```


Examples 3

```
Part A:
Q: How can you determine the key points for the graphs of functions of the form \(y=\) \(a \sin b x\) and \(y=a \cos b x\) ?
Part B:
Q: The average rate of change is positive and negative over different intervals in the period.
What does this tell you about the graph of the function?
```


Examples 4

```
Q: How can you determine the middle of a graph if you are given the minimum and maximum values of the function?
Q: How does the movement of the hour hand on the clock correspond to the graph of the function?
```


Examples 5

```
Q: How can the period of a trigonometric function be determined by its graph?
Q: How would the graph of \(f\) compare to the graph of \(g\) ?
Q: How would the equation of \(g\) compare to the equation of \(f\) ?
```

