Topic 7.2 Angles and the Unit Circle
Essential Question:
How can you extend the trigonometric ratios to angles greater than 90° ?

Explore \& Reason

Complete online.
CONCEPT Summary

The Unit Circle

The unit circle is a circle that has its center at the origin and has a radius of 1.
In any right triangle formed with the radius as the hypotenuse, the length of the hypotenuse is 1.
Based on right triangle trigonometry

$$
\sin \theta=\frac{y}{1}, \text { or } y \quad \cos \theta=\frac{x}{1}, \text { or } x
$$

Notes:

Q: How can you determine the measure of an angle in Quadrant III if you are only given the measure of the reference angle?

Examples \& Questions
 Examples 1

Q: What statement can you make about the angle by looking at the graph?
Q: What does it mean when you say an angle is in standard position?
Q: How do you know that the triangle you formed is a right triangle?
Q: What do you notice about the positive and negative measures of an angle?
Q: How is measuring a positive angle different than measuring a negative angle?
Q: The measure of the angle could be $(120+360 k)^{\circ}$, where k is any natural number. What do you know about the number of coterminal angles?

Examples 2

Part A:
Q: How can you use information in the diagram about the different quadrants to help you sketch the angel?
Q: Is the terminal side of an angle always in a quadrant? Explain?

Part B:
Q: Can two different angles have the same reference angle?
Q: Do angles in Quadrant I have reference angle?

Part C:
Q: What do you notice about the measures of the reference angles in Quadrant I or Quadrant IV?

Examples 3
Q: How do you know that $\sin \theta=y$ and $\cos \theta=x$ on a unit circle?
Examples 4
Q: Why does the name unit circle accurately describe circle?
Q: How can you determine in which quadrant the terminal side of an angle with a given radian measure lies?

Examples 5
Q: How do you that 2π radians is qual to 360° ?
Q: Why do you multiply the number of radians by $\frac{180^{0}}{\pi}$ when converting radians to degrees?

Examples 6

Q: Why is $6,720 \mathrm{~km}$ substituted for the radius?
Q: How can you use the formula for the radian measure to find the distance the satellite travels?

Practice and Problem Solving

Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)

Lesson Quiz 7.2 \& Notes

