Topic 6.5 Properties of Logarithms

Essential Question:

How are the properties of logarithms used to simplify expressions and solve logarithmic equations?

CONCEPT

For positive numbers b, m, and n with $b \neq 1$, the following properties hold.

$$\log_b mn = \log_b m + \log_b n$$
 Product Property of Logarithms

$$\log_b \frac{m}{n} = \log_b m - \log_b n$$
 Quotient Property of Logarithms

$$\log_b m^n = n \log_b m$$
 Power Property of Logarithms

CONCEPT Summary

	Product Property	Quotient Property	Power Property	Change of Base
ALGEBRA	$\log_b(mn) = \log_b m + \log_b n$	$\log_{b}\left(\frac{m}{n}\right) = \log_{b}m - \log_{b}n$	$\log_b(m^n) = n \cdot \log_b m$	$\log_b m = \frac{\log_a m}{\log_a b}$
WORDS	The log of a product is the sum of the logs.	The log of a quotient is the difference of the logs.	The log of a number raised to a power is the power multiplied by the log of the number.	The log base b of a number is equal to the log base a of the number divided by the log base a of b.
NUMBERS	$\log_2(20) = \log_2(4) + \log_2(5)$	$\log_{10}\left(\frac{2}{3}\right) = \log_{10}2 - \log_{10}3$	$\log_3(16) = 4 \cdot \log_3 2$	$\log_5 7 = \frac{\log 7}{\log 5}$

Q: How are the properties of logarithms useful when solving problems?

Not	es:
-----	-----

Examples & Questions

Examples 1

Q: Why would the equations $x = \log_b m$ and $y = \log_b n$ be used to start the proof?

Examples 2

Q: Why might it be useful to know how to expand logarithmic expressions?

Examples 3

Q: How do the processes of expanding a logarithm and writing an expression as a single logarithm relate to each other?

Examples 4

Q: What does the + in H^+ represent? Does it affect how you solve the equation?

Examples 5

Q: What does each variable represent when you use the Power Property of Logarithms?

Examples 6

Q: Why can you solve the equation using both base 10 logarithms and natural logarithms?

Practice and Problem Solving

Complete MathXL for School: Practice and Problem Solving (online)

Complete MathXL for School: Enrichment (online)

Challenge: #13 – key will be posted in Power School Learning.

•	\sim .	, ,
Lesson	laks be 7	6.5
	WILL	~~~