Topic 6.5 Properties of Logarithms

Essential Question:

How are the properties of logarithms used to simplify expressions and solve logarithmic equations?

CONCEPT

For positive numbers b, m, and n with $b \neq 1$, the following properties hold.

$$
\begin{aligned}
& \log _{b} m n=\log _{b} m+\log _{b} n \cdots \cdots \cdots \cdots \cdot \text { Product Property of Logarithms } \\
& \log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n \ldots \text { Quotient Property of Logarithms } \\
& \log _{b} m^{n}=n \log _{b} m \ldots \ldots \ldots .
\end{aligned}
$$

CONCEPT Summary

Product Property	Quotient Property	Power Property	Change of Base
$\text { ALGEBRA } \begin{aligned} & \log _{b}(m n)= \\ & \log _{b} m+\log _{b} n \end{aligned}$	$\begin{aligned} & \log _{b}\left(\frac{m}{n}\right)= \\ & \quad \log _{b} m-\log _{b} n \end{aligned}$	$\begin{gathered} \log _{b}\left(m^{n}\right)= \\ n \cdot \log _{b} m \end{gathered}$	$\log _{b} m=\frac{\log _{a} m}{\log _{a} b}$
WORDS The log of a product is the sum of the logs.	The log of a quotient is the difference of the logs.	The log of a number raised to a power is the power multiplied by the log of the number.	The log base b of a number is equal to the log base a of the number divided by the log base a of b.
NUMBERS $\begin{aligned} & \log _{2}(20)= \\ & \log _{2}(4)+\log _{2}(5)\end{aligned}$	$\begin{aligned} & \log _{10}\left(\frac{2}{3}\right)= \\ & \quad \log _{10} 2-\log _{10} 3 \end{aligned}$	$\log _{3}(16)=4 \cdot \log _{3} 2$	$\log _{5} 7=\frac{\log 7}{\log 5}$

Q: How are the properties of logarithms useful when solving problems?

Notes:

Examples \& Questions
 Examples 1

Q: Why would the equations $x=\log _{b} m$ and $y=\log _{b} n$ be used to start the proof?

Examples 2

Q: Why might it be useful to know how to expand logarithmic expressions?
Examples 3
Q: How do the processes of expanding a logarithm and writing an expression as a single logarithm relate to each other?

Examples 4

Q: What does the + in H^{+}represent? Does it affect how you solve the equation?

Examples 5
Q: What does each variable represent when you use the Power Property of Logarithms?

Examples 6
Q: Why can you solve the equation using both base 10 logarithms and natural logarithms?

Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)

Challenge: \#13 - key will be posted in Power School Learning.

Lesson Quiz 6.5

