Topic 4.3 Multiplying and Dividing Rational Expressions

Essential Question:

How does understanding operations with fractions help you multiply and divide rational expressions?

Concept

CONCEPT Rational Expression

A rational expression is the quotient of two polynomials. The domain is all real numbers except those for which the denominator is equal to 0 .
$\frac{x^{2}}{x^{2}-9}$ is an example of a rational expression.
Since the denominator cannot equal $0, x^{2}-9 \neq 0$.

$$
x^{2} \neq 9 \rightarrow x \neq 3 \text { or }-3
$$

So the domain of $\frac{x^{2}}{x^{2}-9}$ is all real numbers except 3 and -3 .
Q: In a rational expression, why is the denominator not equal to 0 ?
Q: How does the word rational explain what a rational expression is?

CONCEPT Summary

CONCEPT SUMMARY Products and Quotients of Rational Expressions

RATIONAL EXPRESSIONS

Multiply an Integer or a Polynomial

Divide

Multiply
$\frac{1-x^{2}}{x^{2}+3 x-4} \div \frac{x+1}{x+4}$
$\frac{x+2}{x^{2}-4} \cdot\left(x^{2}-2 x\right)$
$=\frac{x+2}{x^{2}-4} \cdot \frac{x^{2}-2 x}{1}$
The domain is $x \neq-2$ or 2.

Write the polynomial as a rational expression with 1 in the denominator. Then multiply.
$=\frac{1-x^{2}}{x^{2}+3 x-4} \cdot \frac{x+4}{x+1}$
The domain is $x \neq-4$, -1 , or 1 .

Multiply by the reciprocal of the divisor.

WORDS Identify common factors and simplify.
$\frac{3 x}{x+1} \cdot \frac{x^{2}+x}{3 x-6}$
The domain is $x \neq-1$ or 2 .

Examples \& Questions
Examples 1
Q: Why does the simplified rational expression have the same domain as the original rational
expression?
Q: Why does the denominator affect the domain but the numerator does not?
Examples 2
Q: Why is -1 factored out of 2-x in the numerator?
Q: What would happen if you factored -1 out of the expression x-2 in the denominator
instead?
Examples 3
Part A
Q: How can you determine that the domain is $z \neq 0$ and $y \neq 0$ by looking at the rational
expressions?
Part B
Q: Why do you factor the expressions in the numerator and the denominator?
Examples 4
Q: What do you already know about multiplying a fraction and a whole number that is
helpful here?
Q: Is there a number for x that would make $x^{2}+4=0$?
Examples 5
Q: Why do you factor out -1?
Q: How is dividing rational expressions similar to dividing fractions?
Examples 6
Q: What does it mean to have the lesser ratio of surface area to volume?
Q: How do the efficiency ratios of the rectangular prism and the cylinder compare to each
other?
Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)
Challenge: \#14, $16,10,34$ - key will be posted in Power School Learning.
Lesson Quiz 4,3

