Topic 4.2: Graphing Rational Functions

Essential Question:

How are inverse variation and reciprocal functions related and represented?
Explore \& Reason
Please complete online.
CONCEPT

CONCEPT BOX Rational Functions

Just as a rational number is a number that can be expressed the ratio of two integers, a rational expression is an expression that can be expressed as the ratio of two polynomials, such as $\frac{P(x)}{Q(x)}$, where the value of $Q(x) \neq 0$.

A rational function is any function defined by a rational expression, such as $R(x)=\frac{P(X)}{Q(X)}$. The domain of $R(x)$ is all values of x for which $Q(x) \neq 0$.

The function $g(x)=\frac{4 x}{x-3}$ is a rational function.

Notes

Examples \& Questions

Examples 1

Q: What do the asymptotes of $g(x)$ look like compared to the parent function $f(x)=\frac{1}{x}$?

Examples 2

Part A:
Q: How do you find the factors of $x^{2}+7 x+12$?
Q: Are there any rational functions that do not have vertical asymptotes?
Q: How would the graph of a rational function look if one of the factors were a facto rof both the numerator and the denominator?

Part B:
Q: What happens to a fraction as the denominator approaches infinity?
Q: What does the degree of the numerator tell you about the horizontal asymptotes of these
functions?
Examples 3
Q; How can you determine which technique to use to find the horizontal asymptotes in this function?
Q: What strategies did you use to graph this function?

Examples 4

Q: Is there a way to solve this problem if you do not have access to technology?
Q: What does the vertical asymptote mean in terms of the context?
Examples 5
Q: Why do you check to see if the numerator of a rational function is equal to zero after
finding the potential vertical asymptotes?
Practice and Problem Solving
Complete MathXL for School: Practice and Problem Solve (online)
Complete MathXL for School: Enrichment (online)

Challenge: \#12, 35 - key will be posted in Power School Learning.

Lesson Quiz 4.2

