Topic 4.1: Dividing Polynomials

Essential Question:
How do you calculate with functions defined as quotients of polynomials, and what are the key features of their graphs?

Model and Discuss

Complete online.

CONCEPT

CONCEPT Inverse Variation

When a relation between x and y is an inverse variation, we say that x varies inversely as y. Inverse variation is modeled by the equation $y=\frac{k}{x^{\prime}}$
or with an equivalent form $x=\frac{k}{y}$ or $x y=k$, where $k \neq 0$. The variable k represents the constant of variation, the number that relates the two variables in an inverse variation.

In this table, the constant of variation is 24.

... the value of y is halved from 24 to 12 to 6 to 3 .

Concept Summary

CONCEPT SUMMARY Inverse Variation and the Reciprocal Function			
CONCEPT SUMMARY Inverse Variation and the Reciprocal Function			
	Inverse Varia		Transformations of the Reciprocal Function
WORDS	An inverse va two variables increases, the	on is a relation between h that as one variable decreases proportionally	The reciprocal function models the inverse variation, $y=\frac{1}{x}$. Like other functions, it can be transformed.
ALGEBRA	$y=\frac{k}{x}$, where k		$y=\frac{a}{x-h}+k$
EXAMPLES	$y=\frac{1}{x}$ asymptotes: $\begin{aligned} & x=0 \\ & y=0 \end{aligned}$		$\begin{aligned} & y=\frac{1}{x-4}-2 \\ & h=4 \\ & k=-2 \end{aligned}$ Parent is transformed down 2 and right 4. asymptotes: $\begin{aligned} & x=4 \\ & y=-2 \end{aligned}$

Q: How does an inverse variation relate to the concept of reciprocal function?

Notes

Examples \& Questions

Examples 1
Q: What do you notice about the pattern?
Q: How can you confirm that a table of values represents an inverse variation using multiplication?
Q: What does it mean if the product of $x y$ is not constant within a table?

Examples 2

Q: How does the constant of variation k help determine the values of x and y ?
Q : What are two more pairs of values for x and y that would fit the relationship?
Examples 3
Q: What information about the inverse variation model is given that will be used to set up an equation?
Q: Using the inverse variation model, can you find the frequency for any string length?
Examples 4
Q: What do you notice about the relationship between the x - and y-values?
Q: How does the reciprocal function relate to inverse variations?
Q: Why is the domain and range of the inverse function restricted?
Examples 5
Q: How can you recognize and describe a translation on a coordinate plane?
Q: What is a good point of reference when graphing a translation?
Practice and Problem Solving
Complete MathXL for School: Additional Practice (online)
Complete MathXL for School: Mixed Enrichment (online)

Challenge: \#20, 21, 22, 25 - key will be posted in Power School Learning.

Lesson Quiz 4.1

