Topic 3.6: Theorems about Roots of Polynomial Equations Essential Question:

How are the roots of a polynomials equation related to the coefficients and degree of the polynomial?

Concept

CONCEPT The Rational Root Theorem

Let $P(x) = a_n x^n + a_{n-1} x^n + \ldots + a_1 x + a_0$ be a polynomial with integer coefficients.

If the polynomial equation P(x) = 0 has any rational roots, then each rational root is of the form $\frac{p}{q}$, where p is a factor of the constant term, a_0 , and q is a factor of the leading coefficient, a_p .

Concept

CONCEPT Fundamental Theorem of Algebra

If P(x) is a polynomial of degree $n \ge 1$, then P(x) = 0 has exactly *n* solutions in the set of complex numbers.

If P(x) has any factor of multiplicity m, count the solution associated with that factor m times. For example, the equation $(x - 3)^4 = 0$ has four solutions, each equal to 3.

Q: How might the Fundamental Theorem of Algebra be helpful when finding solutions to polynomial functions?

Notes:

CONCEPT	T Summary				
orems About Roots of Polynomial Equations	Example	$2x^{3} + 3x^{2} - 10x - 15 = 0$ $p = -15; \text{ Factors of } p: \pm 1, \pm 3, \pm 5, \pm 15$ $q = 2; \text{ Factors of } q: \pm 1, \pm 2$ Possible rational roots: $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$ $-\frac{3}{2}$ is a root of the equation.	If $P(x)$ is a polynomial of degree $n \ge 1$, then $P(x) = 0$ has exactly n solutions in the set of complex numbers.	Complex Conjugates	Let <i>P</i> be a polynomial function with real coefficients and let <i>a</i> and <i>b</i> be real numbers. Then if $a + bi$ is a root of P(x) = 0, then $a - bi$ is also a root of P(x) = 0.
	Words	For the polynomial equation $0 = a_n x^n + a_{n-1} x^{n-1} + + a_1 x^1 + a_0,$ there are a limited number of possible rational roots. Rational roots must have reduced form $\frac{p}{q}$ where p is an integer factor of a_0 and q is an integer factor of a_n . Use substitution or synthetic division to check roots.	If $P(x)$ is a polynomial of degree $n \ge 1$, the set of complex numbers.	Irrational Conjugates	Let <i>P</i> be a polynomial function with rational coefficients and let <i>a</i> and <i>b</i> be real numbers. Then if $a + \sqrt{b}$ is a root of $P(x) = 0$, then $a - \sqrt{b}$ is also a root of $P(x) = 0$.
CONCEPT SUMMARY Theorems		RATIONAL ROOT THEOREM	FUNDAMENTAL THEOREM OF ALGEBRA	CONJUGATE ROOT	THEOREMS

Examples & Questions

Examples 1

Q: How are the two polynomial functions similar? How are they different?

Examples 2

Q: Why does it appear that 4 is a zero of the function?

Q: How could you eliminate some of the possible roots that need to rest?

Examples 3

Q: Does the order in which you test the possible rational roots matter?

Q: How are synthetic division and the Quadratic Formula useful when finding all complex roots?

Examples 4

Part A

Q: What do you know about the product of a rational and an irrational number that is helpful when determining whether the coefficient is rational or irrational?

Part B

Q: How is the difference of two squares helpful in obtaining a rational coefficients?

Examples 5

Part A:

Q: What do you need to find to be able to write the equation with the given root?

Part B

Q: What is another way to determine that the function Q must have a degree of at least 4?

Practice and Problem Solving Complete MathXL for School: Additional Practice (online) Complete MathXL for School: Enrichment (online)

Challenge: #18, 24, 29, 35 – key will be posted in Power School Learning.

Lesson Quiz 3.6