Topic 3.5: Dividing Polynomials

Essential Question:

How are the zeros of a polynomial function related to a function's equation and graph?

Model and Discuss

Remainder Theorem and Factor Theorem
Q: How do the Remainder Theorem and Factor Theorem Compare?

CONCEPT Summary

Q: How does the graph shown verify that a, b, and c are zeros of the function?

CONCEPT SUMMARY Zeros of Polynomials

FUNCTION $\quad f(x)=(x-a)^{2}(x-b)^{3}(x-c)$

GRAPH

Multiplicity 2, has a turning point at the x-axis

Multiplicity 3 , crosses the x-axis

The zeros are a, b, and c.
a has multiplicity 2.
b has multiplicity 3.
c has multiplicity 1.

Multiplicity 1,
crosses the x-axis

Notes:

Examples \& Questions

Examples 1
Q: How is the Zero Product Property helpful when graphing a polynomial function?
Examples 2
Q: What do you notice about each graph in relation to the polynomial function it represents?
Q: How does the term multiplicity of a zero relate to multiplication?
Examples 3
Q: What do you notice about the graph that helps in determining the zeros of the function?
Q: Why is it helpful to use synthetic division to find a zero of a function?

Examples 4

Q: Why is it important to think about the domain of the function before starting?
Q: Why would only discrete values greater than 0 be in the domain of this function?

Q: What do the zeros represent in the context of the problem?
Examples 5
Q: How could you find the roots of $P(x)$ if you didn't recognize the identity
$x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=(x+y)^{3}$?

Examples 6
Q: Why is the solution of the inequality the same as the intervals where the graph of $P(x)$ is below the x-asis?

Prackice and Problem Solving
Complete MathXL for School: Additional Practice (online)
Complete MathXL for School: Enrichment (online)

Challenge: \#25, 27, 30 - key will be posted in Power School Learning.

Lesson Quiz 3.5

