Topic 2.3: Factored Form of a Quadratic Function

Essential Question:
How is the factored form helpful in solving quadratic equations?

CONCEPT: Zero Product Property

$$
\text { If } a * b=0, \text { then } a=0 \text { or } b=0
$$

CONCEPT SUMMARY

Factored Form of a Quadratic Function

FACTORED FORM $y=a x^{2}+b x+c$ can be written as $0=a(x-p)(x-q)$, where p and q are the zeros of the function. The x-intercepts of the graph correspond to the zeros of the function. Two zeros denote 3 intervals of x values.

GRAPH

For the function $y=2 x^{2}+3 x-14$, write the equation $0=2 x^{2}+3 x-14$ in factored form to identify the zeros.
$0=2 x^{2}+3 x-14$
$0=(2 x+7)(x-2)$
The zeros of the function are $x=-\frac{7}{2}$ and $x=2$.
intervals where function values are positive:

$x<-\frac{7}{2}$, and $x>2$
interval where function values are negative: $-\frac{7}{2}<x<2$
Notes:

Examples and Questions

Examples 1
Q: How is using Distributive Property helpful when factoring a quadratic expression?
Examples 2
Q: How does the graph verify the values of the zeros of a function?
Examples 3
Q: Why is it important to write the equation in factored form to solve?

Examples 4

Q: Why is it helpful to factor out the GCF as a step in finding the zeros?

Q: Why is one of the zeros of the function not a valid solution in the context of the situation?
Examples 5
Q: How can a function be both positive and negative? Explain algebraically and graphically.
Q: Why is it important to identify positive and negative intervals of a function?
Examples 6
Q: Why is it necessary to use a point other than the x-intercepts to write an equation for a parabola?

Q: Why are you given 3 points to determine the equation instead of 2?
Prackice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Mixed Review (online)
Challenge: \#10, 15, 39, 41, 42, 45 - key will be posted in Power School Learning.

Lesson Quiz 2.3

