Topic 2.2: Standard Form of a Quadratic Function

Essential Question:
How do you use quadratic equations to model the real world and solve problems?
Critique and Explain:
Please go online and submit your answers.
CONCEPT SUMMARY

Standard Form of a Quadratic Function

STANDARD FORM

$$
y=a x^{2}+b x+c
$$

$$
y=-2 x^{2}-8 x+1
$$

KEY FEATURES

$$
\begin{array}{lrl}
\text { Vertex } x \text {-coordinate of vertex: } h=-\frac{b}{2 a} & h & =-\frac{(-8)}{2(-2)}=-2 \\
\text { Substitute } h \text { for } x \text { and solve for } & y & =-2(-2)^{2}-8(-2)+1 \\
y \text { to find the } y \text {-coordinate of } & & =-8+16+1 \\
\text { the vertex. } & & =9
\end{array}
$$

The vertex is $(-2,9)$.

Axis of Symmetry $x=-\frac{b}{2 a}$
y-intercept ($0, \mathrm{c}$)

GRAPHS

$x=-2$
$(0,1)$

Notes:

Examples and Questions

Examples 1
Q: How are the variables of a, b, and c in the standard form and vertex form of the quadratic function related?

Examples 2
Q: What does the value of a tell you about the vertex and shape of the parabola?

Q: How does knowing the axis of symmetry help to graph a quadratic function?
Q: Why do you need to find vertex to graph the function?
Examples 3
Q: On the graph, what do you notice about the value of y when $x=60$?
Q: Explain why it would never make sense for this function to have a negative value for b.

Examples 4

Q: Does the vertex always need to be one of the three points in order to write the equation of a parabola?

Q: What is another strategy you could use to write the equation of a parabola given three points?

Examples 5

Q: If you substitute the values for x from the points on the graph into the quadratic equation obtained by regression, how would the calculated value for u be related to those in the graph?

Q: How does using quadratic regression help when determining the maximum height the discus will reach?

Prackice and Problem Solving
Complete MathXL for School: Practice and Problem Solving (online)
Complete MathXL for School: Enrichment (online)
Challenge: \#12, 14, 27, 28, 31
Lesson Quiz 2.1

